
NASA-TM-II2265

Experience with Parallel Computers at NASA Ames

David H. Bailey

RNR Technical Report RNR-91-007

February 7, 1991

N/ A
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Rev Feb 81)



Experience with Parallel Computers at NASA Ames

David H. Bailey

RNR Technical Report RNR-91-007

February 7, 1991

Abstract

Beginning in 1988, the Numerical Aerodynamic Simulation (NAS) organization at

NASA Ames Research Center has studied the usability of highly parallel computers on

computational fluid dynamics and other aerophysics applications. Presently the NAS Ap-

plied Research Branch operates a CM-2 with 32,768 nodes and an Intel iPSC/860 with

128 nodes. This note gives an overview of our experience in using these systems, high-

lights both strong points and weak points of each, and discusses what improvements will

be required in future highly parallel systems in order that they can gain acceptance in the

mainstream of scientific computing.

The author is with the NAS Applied Research Branch at NASA Ames Research Center,

Moffett Field, CA 94035.



,Introduction
NASA Ames ResearchCenter has long been a trail blazer in the field of high per-

formance scientific computation, particularly for computational fluid dynamicsand other
aerophysicsapplications. Back in the 1970sNASA Ameswas the home of the Illiac IV,
which featured a peak performanceof approximately250MFLOPS. In 1982,NASA Ames
took delivery of the first two processorCray X-MP, which featured a peak performance
of nearly 400 MFLOPS. In 1986the newly formed Numerical Aerodynamic Simulation
(NAS) organization at NASA Ames installed the first full-memory Cray-2, with a peak
performanceof 1.6GFLOPS. Most recently,the NAS facility added in 1988a Cray Y-MP
with a peak performanceof 2.6 GFLOPS.

By the late 1980sit becameclearthat the "classical"supercomputerdesignepitomized
by existing Cray systemswas approachingmaturity, and that highly parallel computer
systemshad the most potential for achievingmulti-TFLOPS levels of sustainedperfor-
mance,which weproject will be required beforethe end of the decade.In order to better
understand thesesystemsand to help advancethis technologyto the level required for
mainstream supercomputing, the NAS Applied ResearchBranch wasorganizedin 1988.
Scientistsin this organizationand its affiliatesport application programsto parallel com-
puters, developnew algorithms and programmingtechniques,and study the performance
of the resulting implementations [1, 2, 3, 5, 6, 7, 8 and 9]. We now operate a Connec-
tion Machine2 (CM-2) by Thinking Machines,Inc. and an iPSC/860 by Intel Scientific
Computers. We plan to acquiresignificantly morepowerful systemsin the future.

As of this date, wehavebeenusing the CM-2 for nearly threeyearsand the iPSC/860
for overoneyear. This notegivesa brief summaryof ourexperienceand highlightsboth the
strengthsand the weaknessesthat wehave observedin thesetwo systems.Requirements
and recommendationsfor future systemsare then outlined.

The Connection Machine

The NAS CM-2, obtained in collaboration with the Defense Advanced Projects Re-

search Association (DARPA), was installed in 1988 with 32,768 processors. Recently it

was upgraded with 64 bit floating point hardware and four gigabytes of main memory, or

about twice that of the NAS Cray-2. We hope soon to install the new "slicewise" Fortran

compiler, which will view the hardware as a SIMD array of 64 bit floating point processing

units.

For the first year or two, most applications on the CM-2 were coded in *LISP, an ex-

tension of the LISP language for parallel processing. More recently, however, programmers

have started using the CM Fortran language, which is based on Fortran-90 [4]. CM Fortran

has been plagued by delays, and it is still in a "pre-release" stage.

Perhaps the most notable achievement on the CM-2 is the porting of a variation of

the NASA Ames "ARC3D" code. This is a three dimensional implicit Navier-Stokes fluid

dynamics application and employs a number of state of the art techniques. On a 64 × 64 × 32

grid, this code now runs at 190 MFLOPS on 16,384 processors [7]. The equivalent one

processor Y-MP rate for this code is 128 MFLOPS.

2



The strongest positive feature of the CM-2, from our perspective, is TMC's adop-

tion of a programming language based on Fortran-90. Some have questioned whether the

Fortran-90 array constructs are sufficiently powerful to encompass a large fraction of mod-

ern scientific computation. Basically, this is the same as the question of to what extent the

single program multiple data (SPMD) programming model encompasses modern scientific

computation. While we cannot speak for other facilities, it seems clear that a very large

fraction of our applications can be coded effectively using this model. Even some applica-

tions, such as unstructured grid computations, which appeared at first to be inappropriate

for SPMD computation, have subsequently been successfully ported to the CM-2, although

different data structures and implementations techniques have been required [5].

One weak point of the current CM-2 is that it utilizes a rather dated hardware technol-

ogy. Further, the CM was not designed from the beginning for floating point computation,

and the floating point processors now in the system were incorporated in a somewhat inele-

gant fashion. Clearly future editions of the CM need to employ more advanced technology

and to integrate floating point processing more effectively. Secondly, we have found the

fact that the system cannot be partitioned any finer than into 8,192 node blocks to be dis-

advantageous in a multiuser setting, particularly for users debugging and upgrading their

codes. One additional weak spot is the slowness of the router. It has been our experience

that ifa program must make significant use of the router, its performance on 8,192 nodes

is often no better than on a state of the art RISC workstation.

The principal weakness with the CM-2 at the present time, however, is the CM Fortran

compiler, which still has a number of bugs and frequently delivers disappointing perfor-

mance. Partly this is due to the fact that writing an effective Fortran-90 compiler, including

efficient array intrinsics, has proved to be much more of a challenge than originally an-

ticipated. Other vendors attempting to write Fortran-90 compilers are reported to be

having similar difficulties. In any event, clearly the CM Fortran compiler must be further

improved.

Another major weakness of the CM-2 is the extent to which the achieved performance is

sensitive to the algorithm selected. It is not unusual for a reasonably well conceived and well

written code to deliver single digit MFLOPS performance rates. Often the programmer

must try a number of different parallel algorithms and implementation schemes before

finding one that delivers respectable performance. Some scientists have lost interest in the

system after such experiences. This phenomenon is partly due to the fact that a very high

level of parallelism is required to obtain good performance on the CM-2. But it is also due

in part to various weaknesses in the compiler.

The Intel iPSC/860

The NAS Intel iPSC/860 system, which was one of the first two of these systems

shipped by Intel, was installed in January 1990. It has 128 nodes, each of which contains a

40 MHz i860 processor (with 60 MFLOPS peak performance) and 8 megabytes of memory.

The complete system has one gigabyte of memory and a theoretical peak performance of

roughly seven GFLOPS.

3



Programs for the Intel system may be codedin either C or Fortran, although most
scientists have chosenFortran. At first, the only availablecompilers were from Green
Hills. These compilers did not utilize many of the advancedfeatures of the i860, and
so single node performancewas predictably poor, typically only one or two MFLOPS.
More importantly, compile/link times werevery long, typically 30 minutesfor a 5,000line
program. Recently Intel madeavailablesomenew Fortran and C compilers,producedby
the Portland Group. While the initial releaseof thesecompilersdid not featuresignificantly
faster executionspeeds,at least the compile/link speedswere much better. Further, the
Portland Group's i860 compilers are now availableon Sun-4 workstations, and running
them off-line on Sun-4 systemshas reducedcompile/link times by a factor of ten, to only
about seventysecondsfor a 5,000line program.

Typical of the performanceresultsobtainedon the Intel systemsofar is a performance
rate of 123MFLOPS using64nodeson the NASA Ames"ARC2D" code,atwo dimensional
fluid dynamicsprogram with a 320× 128grid [2, 3]. This compareswith 86MFLOPS on a
singleprocessorof the Cray-2 and 172 MFLOPS on a singleprocessorof the Cray Y-MP.

An important positive featureof the Intel systemisthe fact that programscanbeeasily
ported to a singlenode, which is not unlike the RISC workstation processingunits that
many usersare familiar with. Oncethat is done,messagepassingcan be debuggedusing
only two or four nodesor evenusing an off-line simulator availablefrom Intel. Then the
applicationcaneasilybescaledup to the full system.A secondmajor advantageis the fact
that from our experienceit is fairly easyto obtain moderately respectableperformanceus-
ing the system. Almost all codesthat haveemployedreasonablywell conceivedalgorithms
have achievedat least 100 MFLOPS on 128nodes,and many run at significantly higher
rates.

Oneweaknessof the current systemis that singlenode performanceis disappointing,
even with 40 MHz processorsand the Portland Group Fortran compiler. SomeFortran
codesrun at 8 MFLOPS (double precision)ona singlenode, but manymoreonly run at 2
to 4 MFLOPS. Sincethe peak performanceof the i860 is 60MFLOPS (double precision),
there is ample room for improvement here. However,from our analyses [6] we do not
expect more than about 8 MFLOPS per node on most Fortran codesevenwith the best
Fortran compiler, due mainly to the somewhatlimited bandwidth betweenmain memory
and the i860processor.We havefound that the 8 kilobyte on-chip datacachein the i860is
too small to significantly improve performanceon most codes.A much larger cachewould
definitely help, but improved main memory bandwidth would be more valuablefor the
main body of Fortran scientific codes.

Once the Fortran compiler has beenimproved, the limited bandwidth of the current
interprocessornetwork will loom as a seriousperformancebottleneck. Obviously Intel
recognizesthis problem, and the new TouchstoneDelta systemto be installed at CalTech
will feature a grid network with much higherbandwidth. Needlessto say,wewill be quite
interestedto seewhat improvementin overall performanceresults from this upgrade.

Perhapsthe most annoying drawbackof the current system is the instability of the
operating system.Evenoneyear after installation, it is not unusualfor the systemto have

4



to be rebooted two or three times in a singleday. Clearly thesesoftwarebugs must be
fixed. Relatedto this problem is the equally seriousdrawbackof a weakfront end system,
which is basically a 386 personal computer. Fortunately, with the Sun-basedPortland
Group compilers, we do not have to compile and link on this system anymore. But in
any event this front end is not designedto accommodatenumerousinteractive users,and
future versionsof the iPSC must include a muchmorepowerful servicefacility.

Conclusions
When we comparethe performancerates that we haveobtained so far, the products

of reasonableefforts by bright researchers,with the theoretical peak performancerates of
theseparallel systems,the results are somewhatdisappointing: typically 1% to 5% for
both the CM-2 and the iPSC/860, as comparedwith 30% to 60% on one processorof a
Y-MP. So what do we think are the future prospectsfor thesesystems?

While wearestill basicallyoptimistic that highly parallelcomputershavethe potential
to becomepowerful, usablescientific systems,it is clear that some improvementsmust
be made from the current designs. First of all, parallel vendorsneedto recognizethat
most real scientificfloating point computation, and certainly scientific computation at our
facility, is characterizedby aratio of floating point operationsto main memoryreferencesof
approximately unity. What this meansis that systemscannot rely solelyon large register
or cacheutilization ratios to obtain respectableperformancerates, and that improved
bandwidth betweenprocessorsand main memory is essential. It also meansthat floating
point processorsmust delivergood performanceon computationswith nonunit strides.

Secondly,it is anunpleasantfact of the stateof the art in computational fluid dynamics,
as well as in many other numerical applications, that the demandingproblemsthat have
the most researchinterest require implicit numericalsolutionschemes,which are inherently
nonlocal in character. Also, arrays often must be accessedin eachof three dimensions.
Thesefactsmeanthat data communication,both within a singlenodeand betweennodes,
is inherently nonlocal. In somecases,different algorithmscan improve data locality. But
the fact still remainsthat for advancedscientific computersto be taken seriously, they
must offer respectableperformanceon applicationswith only moderatedata locality. This
means,amongother things, that the interprocessorcommunicationbandwidth of current
systemsmust be greatly increased.

Thirdly, weare now solidly convincedthat for a majority of all scientific applications,
and for perhaps90%of our applications, the Fortran-90language[4] will be the language
of choice,and vendorsmust support this languagefor multiprocessorcomputation. Many
scientistshavetold us that their chief reservationof porting codesto ourparallel computers
is the prospect that their code will no longer run on other systems. Once Fortran-90 is
officially adopted, which is now expected soon, scientistswill be much more willing to
consider recastingtheir codesto employ the Fortran-90 array constructs. Already Cray,
for one, has enhanced its Fortran compiler to accept some of these array constructs, and

some scientists on our systems now use the Crays in their efforts to port codes to the CM-2.

It may be too much to expect that future parallel computer systems will deliver re-

5



spectableperformance from arbitrary Fortran-90 programs. For example, it is doubtful
that interconnectionnetworkswill everhavethe high bandwidth and low latency required
for high performancewhen computing alongeachdimensionof a three dimensionalarray
code. However,in our opinion it is reasonableto expect that a parallel computer system
shoulddeliver respectableperformanceon codeswherea reasonableeffort hasbeenmade
to reduceinterprocessordata traffic. For example,considerthe following generalparadigm
for a three dimensionalscientific computation:

1. Perform numerical computations, using array constructs,along the first dimension,
which is mapped to be within local nodes.

2. Perform an array transposition, using the Fortran-90 RESHAPE operator, so that
the seconddimensionis now the first dimension.

3. Perform numerical computationsalong the first (i.e. the second)dimension.

4. Perform an array transposition so that the original third dimensionis now the first
dimension.

5. Perform numerical computationsalong the first (i.e. the third) dimension.

6. Perform an array transposition back to the original array ordering.

Onefeature of the aboveparadigm that is commonto many parallel implementations
is that it featurestwo dimensionalparallelism. For a 100x 100x 100problem,this means
10,000way parallelism. In our opinion, if a parallel computer system cannot deliver re-
spectableperformanceon a problem of this'size with two dimensionalparallelism, but
instead requiresthe programmer to alsofind parallelism in the third dimension, then its
usability for a broad rangeof real scientific problemsis severelylimited.

We certainly do not claim that the aboveschemeis most efficient for all three dimen-
sional scientific applications. Even for our computational fluid dynamicsprograms,other
schemesare often more effective. Nonetheless,it seemsclear that if a parallel computer
systemcannot deliver respectableperformanceon an application codedaccordingto this
design, then it is doubtful that it will be able to deliver respectableperformanceon that
application no matter how it is coded. In short, we regardthis asa minimum requirement
of a usableparallel computer.

Although a high level of sustainedperformanceon real scientific applications, coded
with reasonableeffort, is the most important considerationin a parallel computer, it is
clear from our experiencethat other aspectsof thesesystemsalso needto be improved.
For example, if parallel computers are ever to be widely used in scientific computation
centers, then they must be capableof handling a fairly large number of interactive users
(say 50), especiallyduring daytime hours when usersare debuggingand upgrading their
codes.



What this meansin terms of hardwareis that it is essentialtha_a parallel computerbe
decomposableinto at least ten or twenty independentsubdomains. Sucha hardwarede-
sign may alsobe an advantagein the future, when scientiststackle largemultidisciplinary
applications. What this meansin terms of softwareand environment is that the parallel
computer systemmust include oneor more powerful servicenodeswith a full Unix oper-
ating system, including networking and batch queueingfacilities. It also meansthat the
systemmust alsobe ableto dynamically repartition the computational nodes(i.e. without
rebooting the system),at the sametime providing reasonablesecurityagainstusersstoring
data into nodesor memory locations that they donot own.

A related issueis massstorage.While both the current CM-2 and iPSC/860 systems
havemoderately fast and high capacity massstoragesystems,it is clearly important that
future systemsincreasethe speedand capacity of massstoragecommensuratewith the
increasein computationalpower. Also, it is essentialthat future parallel computer systems
provide a high performancenetwork interface (suchasthe HiPPI interface) to allow high
speeddata communicationto workstationsand archival storage.

Werecognizethat the developmentof high performance,highly usableparallelcomputer
systemswill be a challengingtask. But wefeel that without major improvementsin both
hardware and software, there is a risk that scientistswill eventually tire of struggling
with thesesystemsand will return to conventionalworkstationsand supercomputers,and
parallel systemswill neverbe adoptedfor mainstreamsupercomputing. Thus westrongly
support aggressiveefforts by vendorstowards thesegoals.

Acknowledgement
The author wishesto acknowledgehelpful commentsand suggestionsby Eric Barszcz

and Tom Lasinski of the NAS Applied ResearchBranch and by Rod Fatoohi,Horst Simon
and Sisira Weeratungaof Computer SciencesCorp.



References

. Bailey, D. H., Barton, J., Lasinski, T., and Simon, H., "The NAS Parallel Bench-

marks", Technical Report RNR-91-002, NAS Applied Research Branch, NASA Ames

Research Center, January 1991.

. Bailey, D. H., et al., "Performance Results on the Intel Touchstone Gamma Proto-

type", Proceedings of the Fifth Distributed Memory Computing Conference, April

1990, p. 1236 - 1245.

3. Barszcz, E., "One Year with an iPSC/860", Technical Report RNR-91-001, NAS

Applied Research Branch, NASA Ames Research Center, January 1991.

4. Fortran 90, Draft International Standard, American National Standards Institute,

June 1990.

. Hammond, S., and Barth, T. J., "An Efficient Massively Parallel Euler Solver for

Unstructured Grids", RIACS Technical Report 90-47, NASA Ames Research Center,

October 1990. Also published as AIAA paper 91-0441, 29th Aerospace Sciences

Meeting, January 1991.

. Lee, K., "On the Floating Point Performance of the i860 Microprocessor", Technical

Report RNR-90-019, NAS Applied Research Branch, NASA Ames Research Center,

October 1990.

. Levit, C., and Jespersen, D., "Numerical Simulation of Flow Past a Tapered Cylin-

der", Technical Report RNR-90-021, NAS Applied Research Branch, NASA Ames

Research Center, October 1990. Also published as AIAA paper 91-0751, 29th Aero-

space Sciences Meeting, January 1991.

. McDonald, J. D., "Particle Simulation in a Multiprocessor Environment", Technical

Report RNR-91-003, NAS Applied Research Branch, NASA Ames Research Center,

January 1991.

9. Schreiber, R., "An Assessment of the Connection Machine", RIACS Technical Report

90-47, NASA Ames Research Center, June 1990.

8


